کنسورسیوم آنالیزسیستم های انرژی (ESAC[1]) متشکل ازدانشگاه های پوردو، میسوری، ویسکانسین، ناوی و شرکت ABB باریاست دانشگاه پوردو ودانشگاه میسوری تصمیم دارند یک گام اساسی درجهت جانشین نمودن فناوری که درطی یکصدسال گذشته برترانسفورماتورهای غوطه وردر روغن حاکم بوده است بردارند.
این ترانسفورماتورهای جدید بر اساس فناوری نیمه هادیها طراحی می شوند . بدین معنا که عناصر نیمه هادی نظیر ترانزیستورهاو مدارات مجتمع ( آی سی ها ) جانشین سیم پیچ های مسی وهسته های آهن سنگین وزن در ترانسفورماتورهای معمولی می شوند. پروژه فوق تحت نظر اداره مرکزی شرکت ABB واقع در شهر زوریخ درسوئیس انجام میگیرد. اخیرا"پروفسور اسکات سادهاف (Scott Sudhoff ) از دانشگاه پوردو مقاله ای در زمینه احتمال جانشین شدن ترانسفورماتورهای نیمه هادی بجای ترانسفورماتورهای معمولی طی دهه آینده، انتشار داده است .
ترانسفورماتورهای توزیع عنصر اساسی شبکه های قدرت هستند ، آنها ولتاژ خطوط فشار قوی را به ولتاژ 2 2 0V مصرف کننده تبدیل میکنند، که خروجی یک ترانسفورماتور چندین منزل مسکونی را تغذیه میکند .
مزیت اصلی ترانسفورماتورهای نیمه هادی ، افزایش کیفیت انرژی الکتریکی خروجی آنهاست . این مزیت خصوصا" در نواحی که کیفیت انرژی الکتریکی بشدت مورد نظر مصرف کنندگان است اهمیت می یابد .
بارهای مجاور میتوانند مستقیما" روی کیفیت انرژی الکتریکی همدیگر تأ ثیر بگذارند. یک بار سنگین در آپارتمان همسایه (نظیر سوئیچ کردن آسانسور) سبب افت ولتاژخط تغذیه کننده آسانسورمیشود لذا کلیه مصرف کنندگانی که به این خط متصل میشوند دچار افت ولتاژ میشوند و بنابراین نور لامپ ها ، سرعت و گشتاور موتورها (نظیر موتورهای یخچال و….) کاهش میابد و سبب سوختن برخی از این وسائل گردد .
ترانسفورماتورهای نیمه هادی می تواند تمامی مسائل مربوط به کاهش کیفیت انرژی الکتریکی را براحتی حل نمایند . آنها همچنین جریان موثر مورد نیاز برای تغذیه وسائلی نظیر ماشینهای الکتریکی را کاهش داده در نتیجه تلفات خطوط شبکه کاهش می یابد. همچنین ، در این نوع ترانسفورماتورها تلفات ثابت هسته ترانسفورماتورهای معمولی که بصورت شبانه روزی مصرف می شوند بطور قابل ملاحظه ای کاهش می یابد که این امر سبب افزایش راندمان آنها می گردد. ضمن اینکه آلودگی زیست محیطی ناشی از نشت روغن ترانسفورماتورهای معمولی را نیز ندارند .
نکته دیگربرای مقایسه دوترانسفورماتوراینست که هزینه موادمصرفی نظیرمس وآهن هسته درترانسفورماتور معمولی تقریبا"ثابت است لیکن قیمت قطعات نیمه هادی بسرعت درحال کاهش است
|
یک تیم تحقیقاتی صنعتی در آمریکا متشکل از مهندسین و دانشمندان که زیر نظر شرکت Waukesha Electric Systems فعالیت می نمایند، در سال 1999 خبرتحول مهمی را در صنعت برق با انجام آزمایش موفقیت آمیز نوع جدیدی از ترانسفورماتورهای قدرت اعلام نمودند. ترانسفورماتورهای ابررسانایی جدید در مقایسه با ترانسفورماتورهای رایج، کوچک و سبک تر می باشند و دارای طول عمر بیشتری نیز هستند. در این نوع ترانسفورماتورها دیگر نیازی به هزاران گالن روغن جهت عایقی و خنک سازی نمی باشد و در نتیجه خطر ایجاد حریق و مسائل زیست محیطی را نخواهد داشت. در ابررساناها بعلت عدم وجود مقاومت اهمی در برابر جریان dc ، تلفات اهمی برابر با صفر است. لذا با استفاده از ابررساناها در ترانسفورماتورها، تلفات کل ترانسفورماتور، کاهش قابل ملاحظه ای خواهد یافت. تلاشهایی که جهت توسعه ترانسفورماتورهای ابررسانا انجام می گیرد صرفا" بخاطر مسائل اقتصادی و کاهش هزینه نیست. یکی دیگر از دلایل طرح این مبحث این است که در مراکز پر تراکم شهری، رشد مصرف 2 درصدی (سالیانه ) به معنی نیاز به ارتقاء ظرفیت سیستم های موجود است. از طرفی بسیاری از پستهای توزیع بصورت Indoor بوده و در کنار ساختمانها نصب شده اند. در این نوع پست ها همانند دیگر پستهای توزیع، از ترانسهای روغنی استفاده می شود که استفاده از روغن مشکلات و خطرات زیست محیطی و ایمنی مربوط به خود را دارد. در حالیکه در ترانسفورماتورهای ابررسانا، ماده خنک کننده نیتروژن است که خطری برای افراد و موجودات زنده ندارد. بعلاوه در این ترانسفورماتورها، خطر آتش سوزی نیز وجود ندارد. بهمین لحاظ خنک کننده مورد استفاده در ترانسفورماتورهای ابررسانا به هیچ عنوان قابل مقایسه با روغنهای قابل اشتعال و مواد شیمیایی شیمی همچون PCB نیست.
آزمایشات بر یک نوع از این ترانسفورماتور با ظرفیت 1 MVA امکان سنجی فنی و سایر مزایای آنرا به اثبات رسانده است. یکی از مزایای آن کاهش وزن ترانسفورماتور می باشد بطوریکه برای یک ترانسفورماتور 30 MVA وزن آن از 48 تن به 24 تن خواهد رسید.
دو تغییر مهم در طراحی ترانسفورماتور که منجر به طراحی و ساخت این نوع ترانسفورماتورهای جدید شده است، عبارتند از استفاده از مواد ابررسانایی دمای بالا (HTS) بجای سیم پیچ های رایج مسی و بکارگیری از یک سیستم کوچک خنک سازی بجای سیستم خنک کننده رایج ترانسفورماتورهای معمولی.
ترانسفورماتور HTS ، 30 MVA تقریبا" به 200 پوند (100 کیلوگرم ) ابررسانا نیاز خواهد داشت که هیچ گونه مقاومت الکتریکی ندارد و بنابراین هیچگونه حرارتی تولید نخواهدکرد،درحالیکه در ترانسفورماتورهای رایج، سیم پیچهای مسی که هزاران پوند وزن دارند منبع اصلی تولید گرما و ایجاد تلفات میباشند.فن آوری ترانسفورماتور HTS از نظر استفاده از یک سیستم خنک کننده حلقه بسته جهت خنک سازی سیم پیچ های
ترانسفورماتور یکتا می باشد و قادر است که دمای سیم پیچ را تا 382 - درجه فارنهایت برساند.
شکل (1)
همین تیم تحقیقاتی که بر روی ساخت و آزمایش ترانسفورماتور 1- MVA , HTS کار کرده اند، قرار است طراحی و آزمایش یک ترانسفورماتور آزمایشی آلفا 5 / 10 MVA را شروع نمایند.
پروژه ترانسفورماتور HTS در ایالت متحده آمریکا توسط چندین شرکت و سازمان دنبال می گردد. شرکت Waukesha Electric Systems ( WES ) رهبری ساخت اینگونه ترانسفورماتورها را در آمریکا به عهده دارد. این شرکت مسئول طراحی و ساخت هسته و تانک ترانسفورماتور HTS – 1MVA بوده و همچنین مونتاژ و آزمایش آنرا نیز به عهده داشته است. شرکت Intermagnetics General Corporation ( IGC ) در آمریکا، سازنده هادیها و کابلهای ابررسانا می باشد و در این پروژه مسئول طراحی و ساخت هادیهای ابررسانا، سیم پیچ های ترانسفورماتور و طراحی بخشی از سیستم سرمایشی بوده است.
Oak Ridge National Laboratory ( ORNL ) که یک مؤسسه تحقیقاتی می باشد مسئول طراحی و ساخت ساپورت سیم پیچها و زیرسیستم های سرمایشی می باشد.
شرکت برق Rochester Gas and Electric Corporation ( RG&E ) حمایتهای مالی و اقتصادی این پروژه را به عهده داشته و مشاوره این طرح توسط مشاوران بین المللی Electric Power Engineering Department در RPI انجام شد.
دکتر Christine Platt از دپارتمان انرژی آمریکا بر اهمیت این پدیده اذعان می نماید و می گوید که در آمریکا تلفات انرژی الکتریکی تولید شده در حدود 8 درصد می باشد که ترانسفورماتورها نیمی از این تلفات را تولید می کنند و با استفاده از مواد ابررسانا و تولیدات آن این رقم نصف خواهد شد که در نتیجه منجر به صرفه جویی صدها میلیون دلار درسال خواهد شد.
|
پیش از این اطلاعات مربوط به وضعیت ترانسفورماتورهای MVA 25 و بالاتر محدود به اطلاعات آلارم دمای بالای روغن ، نتایج آنالیزسالیانه گازهای حل شده در روغن (DGA ) و اطلاعات اندک دیگری برای ترانسفورماتورهای بزرگتر میگردد. امروزه فن آوری ، امکانات جدیدی را برای اندازه گیری سریع گازهای حل شده در روغن ترانسفورماتور و سایر پارامترهای بحرانی تقریبا" بطور همزمان ، فراهم آورده است .
هر یک از انواع خطاهای ترانسفورماتور ترکیب متفاوتی از گازها را تولید می کند . تقریبا" تمامی خطاها مقادیر مختلفی گاز هیدروژن تولید می کنند که چگونگی مونیتورینگ هیدروژن که اغلب بعنوان علامت اصلی هشدار دهنده است ، اساس انواع روشهای آنالیز گازهای محلول در روغن ترانسفورماتور می باشد .
سه نوع فن آوری اندازه گیری گاز محلول در روغن مورد استفاده قرارگرفته است :
1) فن آوری سنسور نیمه هادی که از یک تراشه سیلیکونی استفاده می کند . هنگامی که این سنسور در معرض گاز هیدروژن قرار می گیرد یک سیگنال الکتریکی تولید می کند .ویژگی پاسخ به هیدروژن در این فن آوری بسیار خوب است .
2) فن آوری پیل سوختی نیز در مونیتورینگ میزان هیدروژن در روغن ترانسفورماتور استفاده شده است . اکسیداسیون الکتروشیمیایی هیدروژن در الکترودهای آشکارساز ، یک جریان الکتریکی متناسب با مقدار هیدروژن تولید می کند . برای مولکولهای کوچکی مانند هیدروژن می توان گفت که 100 در صد گاز موجود در واکنش شرکت کرده و از آنها پاسخ دریافت می شود . سایر مولکولها مانند استیلن ، اتیلن و مونوکسیدکربن نیز می توانند در اکسیداسیون شرکت کرده و تولید سیگنال الکتریکی کنند . این سیگنال تولید شده بخشی از کل سیگنال الکتریکی خروجی است که نمی توان تشخیص داد سهم هر گاز درتولید سیگنال به چه میزان است .
3) طیف نگاری گاز ، سومین فن آوری استفاده شده در اندازه گیری گازهای محلول درروغن است . نمونه های گاز که یا از فضای بالای تانک روغن ترانسفورماتور گرفته شده و یا از روغن ترانسفورماتور بدست آمده است ، از لوله های بلند و نازکی عبور داده می شوند . اندازه گیری های انجام شده روی قابلیت هدایت گرمایی گازها ، سیگنالهایی تولید می کند که با تبدیل این سیگنالها می توان نوع گاز موجود در نمونه اصلی را تشخیص داد .
برای ارزیابی این سه فن آوری، دو ترانسفورماتور که دارای شرایط و نسبت تبدیل کاملا" یکسانی هستند را در نظر می گیریم. ابتدا یکی از آنها را تحت آزمایش تخلیه جزئی قرار می دهیم. در این حالت میزان هیدروژن 600 PPM ، متان 80 PPM و مونوکسید کربن بدون تغییر است. فن آوری پیل سوختی و سنسور نیمه هادی نشان می دهند که چیزی تغییر کرده اما دقیقا" مشخص نیست که چه گازی در روغن حاصل شده است. روش طیف نگاری کاملا" میزان انواع گازها را نشان می دهد.
در مرحله بعد ترانسفورماتور دیگر تحت آزمایش خطای قوس قرار می گیرد. در این حالت هیدروژن 800 PPM و استیلن 200 PPM می باشد. در این حالت نیز روش پیل سوختی و سنسور نیمه هادی تنها به میزان گاز تولید شده اشاره دارند اما طیف نگاری به تفکیک میزان هر یک از گازهای تولید شده را ارائه می دهد.
نتایج نشان می دهد که بعضی از خطاها در یک مدت زمان طولانی ، مقدار کمی گاز تولید می کنند در صورتیکه سایر خطاها مقادیر قابل ملاحظه ای گاز در زمانی کوتاه تولید می کنند .
ارتباط دادن این داده ها با خطاهای ترانسفورماتور عامل مهمی در اتخاذ تصمیمی مناسب برای بهره برداری و نگهداری از ترانسفورماتورها است . برخی از آنها بیانگر این نکته هستند که قابلیت اطمینان بلندمدت ترانسفورماتور مناسب و یا بسیار نامناسب است و یا اینکه عمر مفید ترانسفورماتور به اتمام رسیده است . سایر مقادیر اندازه گیری شده ، نشان دهنده وقوع خطاهای جدی هستند که ممکن است نتایج ناگواری را در پی داشته باشد .
|
نتیجه طبیعی استفاده صنایع از ترانسفورماتورهای توزیع با ظرفیتهای بالاتر، افزایش احتمال بروز اضافه ولتاژها در وضعیتهای مختلف روزانه است . برای تعیین پارامترهای سیستم که می توانند باعث ایجاد اضافه ولتاژهای فرورزونانس شدید گردند، آزمایشهای کاملی توسط موسسه DSTAR انجام گرفته است . آزمایشات مذکور بر روی تعدادی ترانسفورماتور توزیع و تحت شرایط کار واقعی انجام شده است . در طول این آزمایشات، صدها بار عملیات کلیدزنی بر روی ترانسفورماتورهای توزیع با ولتاژهای متفاوت و با سیم پیچ ستاره زمین شده و اولیه مثلث انجام گردید. این پروژه بطور کلی ثابت کرد که در ترانسفورماتورهای با ظرفیت بالا که امروزه توسط صنایع مختلف مورد استفاده قرار می گیرند، احتمال ایجاد اضافه ولتاژ فرورزونانسی بیشتر از ترانسفورماتورهای دهه گذشته می باشد.
بطور نمونه ، در آزمایشات انجام گرفته شده توسط DSTAR بر روی یک ترانسفورماتور معمولی با هسته سیلیکون – فولاد با ظرفیت 225 KVA و ولتاژ 25 KV با اتصال Y –Y ، یک اضافه ولتاژ با پیک 2.35 برابر پیک نامی ترانسفورماتور اندازه گیری شده است .
تحقیقات DSTAR ، برخی نظرات موجود در مورد اثرات پدیده اضافه ولتاژ را رد کرد. برای مثال بجای جریان تحریک هسته تلفات هسته ترانسفورماتور بهترین مشخصه برای شناسایی پدیده اضافه ولتاژ در ترانسفورماتور می باشد. نتایج تحقیقات انجام گرفته توسط این مرکز ، اخیرا" بعنوان مبحث جدید و با ارزشی از سوی IEEE منتشر شده است .
پروژه تحقیقاتی دیگری توسط موسسه DSTAR جهت تعیین تأثیر نصب برقگیر اکسید روی بر روی اضافه ولتاژهای فرورزونانس انجام گرفته است. این تحقیقات نشان داد که وقوع اضافه ولتاژهای فرورزونانس باعث خرابی سریع برقگیر GAPLESS نخواهد شد.
بدلیل وجود امپدانس خیلی بزرگ مدار فرورزونانس گرم شدن برقگیر به آهستگی صورت میگیرد. همچنین این تحقیقات نشان داد که برقگیرها می توانند بعنوان عامل موثری در کنترل اضافه ولتاژها در شرایط گوناگون باشند. دستورالعملهای مختلفی برای کاربرد برقگیرهای مختلف با توجه به شرایط بهره برداری وجود دارد که بیان می کند هر برقگیر چند دقیقه می تواند اضافه ولتاژ فرورزونانس را تحمل کند. این اضافه ولتاژ در زمان کلیدزنی ( سوئیچینگ ) ترانسفورماتورها رخ می دهد.
بانکهای ستاره – مثلث
کلیدزنی بانکهای ترانسفورماتور سه فاز هوایی با سیم پیچی Y – ∆ بصورت فاز به فاز می تواند سبب ایجاد مشکلات اضافه ولتاژ و خرابی ترانسفورماتورها یا برقگیرها گردد. این موضوع در تحقیقات DSTAR بررسی گردید و نتایج بدست آمده مطالب مفیدی را در مورد کلیدزنی ، حفاظت اضافه ولتاژها و قابلیت برقگیرها در رفع این اضافه ولتاژها ارائه نمود. نتایج تحقیقات مذکور همچنین گونه دیگری از پدیده اضافه ولتاژ را که قبلا" گزارش نشده بود، کشف و معرفی نمود. این اضافه ولتاژ که دامنه زیادی دارد یک علت روشن برای خرابی خیلی از ترانسفورماتورها در این زمینه می باشد. یک نمونه از این نوع اضافه ولتاژ درشکل شماره (1) نشان داده شده است .
امواج طرف ثانویه
ترانسفورماتورهای تک فاز توزیع با سیم پیچی از نوع طراحیnon – interlaced به همان اندازه که ممکن است بواسطه امواج صاعقه وارد شده از طریق نقطه خنثی در ثانویه صدمه ببینند به همان قدر نیز ممکن است از طریق امواج طرف اولیه در معرض خطر باشند. همانطور که در شکل ( 2 ) دیده می شود ولتاژ القاء شده در سیم پیچی طرف اولیه در مجموع کم است ولی تنش های لایه به لایه در میان سیم پیچی های ترانسفورماتور زیاد اتفاق می افتد. آزمایشات متعدد DSTAR و بررسی های تحلیلی انجام شده دستورالعمل و راهنمائیهائی را برای حداقل نمودن ریسک خرابی ترانسفورماتور در مواجه با این پدیده، تهیه نموده است.
شکل (1) : تغییرات اضافه ولتاژ
شکل (2)
|
نشتی در اثر تلفات فشار (مثبت یا منفی) بوجود می آید. در یک ترانسفورماتور تحت فشار در صورت ایجاد نشتی احتمال اینکه روغن از تانک با فشار خارج گردد خیلی بیشتر می باشد. روغن ریزی حادثه ناخوشایندی می باشد زیرا روغن های بکاررفته آلوده کننده می باشند و گاهی سبب مشکلات زیست محیطی می گردند. وقتی تانک ترانسفور تحت فشار باشد کشیدن یک نمونه روغن راحتتر است و در اثر نشتی آلودگیها به داخل ترانسفورماتور کشیده نمی شوند.
اگر از یک تانک ترانسفورماتور که در خلأ نگهداری می شود یک نمونه روغن کشیده شود، چه اتفاقی خواهد افتاد؟
روغن نمونه معمولا" از کف تانک کشیده می شود (غیر از آسکارل ) هنگامی که شیر باز می شود ممکن است که هوا به داخل تانک کشیده شود. اگر هوا بوسیله رطوبت، گرد و غبار، یا ناخالصی ها آلوده باشد، روغن می تواند آلوده گردد حتی اگر برای فقط یک مدت زمان کوتاه باشد. همچنین این امکان را فراهم می آورد تا یک حباب هوا درون روغن حرکت کند و این می تواند بطور لحظه ای قدرت دی الکتریک متوسط بین دو نقطه در جایی که یک اختلاف پتانسیل بالا وجود دارد را ضعیف کند که در نتیجه آن ممکن است یک جرقه الکتریکی تولید گردد.
یک ترانسفورماتور که در فشار اتمسفر نگهداری شده بسیار خوب عمل می کند. در حقیقت، اگر ترانسفورماتور آب بندی شده باشد، فشار داخلی با درجه حرارت بالا و پایین می رود و این فقط به واسطه انبساط حرارتی گازهای داخلی ( هوا، نیتروژن یا هر آنچه داخل آن است ) ، روغن و خود تانک ترانس می باشد و دستگاه کاملا"بطور رضایت بخشی از همه جهت وبر اساس طول عمر مورد انتظار عمل خواهد کرد.
وضع نهایی مشخص شده بوسیله DYNEX نشان می دهد که یک فشار مثبت نسبتا" کم از 1 تا 2 پوند در هر اینچ مربع مطلوب است. در حالیکه این میزان فشار سبب صدمه دیدن گاسکت (واشر) و ایجاد نشتی نمی گردد . استخراج نمونه های روغن برای تجزیه های پریودیک معین جهت تشخیص علائم آغازین خطاهای داخلی بآسانی انجام می گیرد و بوسیله کنترل فشار علایم نشتی ها می تواند تشخیص داده شود. همچنین اگر چنانچه یک نشتی گسترش یابد، احتمال اینکه ناخالصیهایی از محیط اطراف به داخل وارد گردند کمتر است. در این حالت نشتی های روغن ترانسفورماتور می توانند برطرف گردند و این کار هزینه کمتری نسبت به تعویض یا تعمیر ترانسفورماتور دارد.
بررسی نشتی ها:
1- گیج فشار را در اول هفته عملکرد ترانسفورماتور در طول روز بررسی کنید. اگر گیج فشار- خلأ در صفر بماند، نشان دهنده خطای آب بندی است. اگر ترانسفورماتور را نمی توان بی برق نمود. دقت کنید که به قسمتهای زنده آن مانند ترمینالهای بوشینگ و هادیهای آن نزدیک نشوید.
2- نیتروژن یا هوای خشک را بطور آهسته در فشار پایین اضافه کنید تا گیج 5 PSI را نشان دهد. بوسیله یک برس، محلول آب صابون به کلیه قسمتهای بالای سطح مایع استعمال کنید. حبابهای کوچک محلهای نشتی را مشخص می نمایند.
3- بعد از اینکه نشتی تعمیر شد، نیتروژن با هوای خشک باندازه کافی اضافه کنید تا فشار هوا به 0.5 PSI برسد ( دمای مایع بالا ). جهت بدست آوردن فشار نرمال در دماهای دیگر، می توان از منحنی زیر استفاده کرد.
|
هارمونیک های تولید شده توسط بارهای غیر خطی می توانند مشکلات حرارتی و گرمائی خطرناکی را در ترانسفورماتورهای توزیع استاندارد ایجاد نمایند . حتی اگر توان بار خیلی کمتر از مقدار نامی آن باشد ، هارمونیک ها می توانند باعث گرمای بیش از حد و صدمه دیدن ترانسفورماتورها شوند . جریان های هارمونیکی تلفات فوکو را بشدت افزایش می دهند . بهمین دلیل سازنده ها ، ترانسفورماتور های تنومندی را ساخته اند تا اینکه بتوانند تلفات اضافی ناشی از هارمونیک ها را تحمل کنند . سازنده ها برای رعایت استاندارد یک روش سنجش ظرفیت، بنام عامل Kرا ابداع کرده اند . در اساس عامل K نشان دهنده مقدار افزایش در تلفات فوکو است . بنابراین ترانسفورماتور عامل Kمی تواند باری به اندازه ظرفیت نامی ترانسفورماتور را تغذیه نماید مشروط براینکه عاملK بار غیر خطی تغذیه شده برابر با عامل K ترانسفورماتور باشد . مقادیر استاندارد عامل K برابر با 4 ، 9 ، 13 ، 20 ، 30 ، 40 ، 50 می باشند. این نوع ترانسفورماتورها عملا" هارمونیک را از بین نبرده تنها نسبت به آن مقاوم می باشند.
ترانسفورماتور HMT ( Harmonic Mitigating Transformer )
نوع دیگر از ترانسفورماتورهای سازگار با هارمونیک ترانسفورماتورهای HMT هستند که ازصاف شدن بالای موج ولتاژ بواسطه بریده شدن آن جلوگیری می کند. HMT طوری ساخته شده است که اعوجاج ولتاژ سیستم واثرات حرارتی ناشی از جریان های هارمونیک را کاهش می دهد. HMT این کار را از طریق حذف فلوها و جریان های هارمونیکی ایجاد شده توسط بار در سیم پیچی های ترانسفورماتور انجام می دهد.
چنانچه شبکه های توزیع نیروی برق مجهز به ترانسفورماتورهایHMT گردند می توانند همه نوع بارهای غیر خطی ( با هر درجه از غیر خطی بودن ) را بدون اینکه پیامدهای منفی داشته باشند، تغذیه نمایند. بهمین دلیل در اماکنی که بارهای غیر خطی زیاد وجود دارد از ترانسفورماتور HMT بصورت گسترده استفاده می شود .
مزایای ترانسفورماتورHMT :
· می توان از عبور جریان مؤلفه صفر هارمونیک ها ( شامل هارمونیک های سوم ، نهم و پانزدهم ) در سیم پیچی اولیه ، از طریق حذف فلوی آنها در سیم پیچی های ثانویه جلوگیری کرد .
· ترانسفورماتورهای HMT با یک خروجی در دو مدل با شیفت فازی متفاوت ساخته می شوند. وقتی که هر دو مدل با هم بکار می روند می توانند جریان های هارمونیک پنجم، هفتم، هفدهم و نوزدهم را درقسمت جلوئی شبکه حذف کنند .
· ترانسفورماتورهای HMT با دو خروجی می توانند مولفه متعادل جریان های هارمونیک پنجم، هفتم ، هفدهم و نوزدهم را در داخل سیم پیچی های ثانویه حذف کنند .
· ترانسفورماتورهای HMT با سه خروجی می توانند مولفه متعادل جریانهای هارمونیک پنجم، هفتم ، یازدهم و سیزدهم را در داخل سیم پیچی ثانویه حذف کنند .
· کاهش جریان های هارمونیکی در سیم پیچی های اولیه HMT باعث کاهش افت ولتاژهای هارمونیکی و اعوجاج مربوطه می شود .
· کاهش تلفات توان بعلت کاهش جریان های هارمونیکی .
بعبارت دیگر ترانسفورماتورHMT باعث ایجاد اعوجاج ولتاژ خیلی کمتری در مقایسه با ترانسفورماتورهای معمولی یا ترانسفورماتور عامل K می شود .
|
شرکت ABB نوع جدیدی از ترانسفورماتورهای تقویت جریان موسوم به بوسترفورمر عرضه کرده است که در سیستم تغذیه راه آهن استفاده می گردد . در این نوع تراسفورماتورها از روغن استفاده نشده و سیستم عایقی سادهای به کار رفته است . استفاده از بوسترفورمر از لحاظ اقتصادی به صرفه بوده و برای محیط زیست نیز مضرات کمتری دارد.
تکنولوژی به کار رفته در بوسترفورمر، همانند Powerformer ها و Dryformer ها ( ترانسفورماتورهای خشک ) مبتنی بر استفاده از کابلها می باشد. این ترانسفورماتورها از یک کابل فشار قوی تشکیل شده که به صورت یک سیم پیچ به دور یک هسته آهنی پیچانده شده است.
در بوسترفورمر از روغن استفاده نشده است و به این ترتیب نیاز به بازرسی مداوم روغن ( دمای روغن، اندازهگیری و تجزیه گاز متصاعد شده از روغن و … ) از بین رفته و هزینههای سرویس ونگهداری پایین آمده است. به علت زمین شدنِ کل ترانسفورماتور، ضریب ایمنی این نوع ترانسفورماتور بسیار بالاست. بوسترفورمر به علت استفاده از تجهیزات اتصال دهنده استاندارد، از ضریب اطمینان بالایی نیز برخوردار است .
ترانسفورماتورهای تقویت جریان با فواصل 5 کیلومتر از یکدیگر، در مسیر خطوط راه آهن و بر روی فیدر نصب میگردند. این نوع ترانسفورماتورها را میتوان هم بر روی تیر و هم بر روی زمین نصب کرد. از بوستر فورمر ممکن است در کشورهای زیادی برای منابع تغذیه مختلف استفاده گردد . اکنون تعدادی از این نوع تراسفورماتورها برای منابع تغذیه راه آهن کشورهای اروپای شمالی در حال ساختند
|
سیستم TMMS بر اساس جمع آوری اطلاعات بحرانی بهره برداری ترانسفورماتور و تجزیه و تحلیل آنها عمل می نماید.
سیستم TMMS با تجزیه و تحلیل اطلاعات قادر خواهد بود که ضمن تفسیر عملکرد ترانسفورماتور عیبهای آن را تشخیص داده و اطلاعات لازم برای تصمیم گیری را در اختیار بهره بردار قرار دهد.
اطلاعات بهره برداری که برای فرآیند نمایش و مدیریت ترانسفور ماتور ها مورد نیاز بوده و توسط سنسورهای مخصوص جمع آوری میگردند بشرح زیر می باشند.
· - گازهای موجود در روغن ترانسفورماتور همراه با ئیدران
· - آب موجود در روغن ترانسفور ماتور همراه با Acquaoil 300
· - جریان بار ترانسفورماتور
· - دمای نقاط مختلف ترانسفورماتور
· - وضعیت تپ چنچر ترانسفورماتور
· - سیستم خنک کنندگی ترانسفورماتور
اطلاعات بهره بردای فوق جمع آوری شده و بهمراه سایر اطلاعات موجود بطور مستمر تجزیه و تحلیل شده تا بتوانند اطلاعات زیر را درباره وضعیت بهره برداری ترانسفورماتور تهیه نمایند.
· - شرایط عمومی و کلی ترانسفورماتور
· - ظرفیت بارگیری ترانسفورماتور
· - میل و شدت تولید گاز و حباب در داخل روغن ترانسفورماتور
· - ملزومات نگهداری ترانسفورماتور
سیستم TMMS فارادی را میتوان برای ترانسفورماتورهای موجود بکار برد و همچنین میتوان آنرا در ساختمان ترانسفورماتورهای جدید طراحی و نصب نمود.
ارتقاء سیستم TMMS فارادی با افزودن سنسورهای اضافی میتواند باعث ارتقاء عملکرد آن برای موارد زیر گردد.
· - حداکثر نمودن ظرفیت بارگذاری ترانسفورماتور برای بهره برداری اقتصادی و بهینه
· - تشخیص عیب و توصیه راه حل در ترانسفورماتور ها
· - مدیریت عمر ترانسفورماتور و افزایش آن
· - تکمیل و توسعه فرایند و عملیات مدیریت ترانسفورماتور ها با کمک اطلاعات اضافی تهیه شده در زمان حقیقی
· -کاهش و حذف خروجی ترانسفورماتورها بصورت برنامه ریزی شده و یا ناشی از خطا
· - آشکار سازی علائم اولیه پیدایش خطا در ترانسفورماتورها
· - نمایش مراحل تکامل و شکل گیری شرایط پیدایش خطا
|
ساخت ترانسفورماتور فشار قوی فاقد روغن در طول عمر یکصد ساله ترانسفورماتورها، یک انقلاب محسوب می شود. ایده استفاده از کابل با عایق پلیمر پلی اتیلن (XLPE) به جای هادیهای مسی دارای عایق کاغذی از ذهن یک محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش کرده است.
تکنولوژی استفاده از کابل به جای هادیهای مسی دارای عایق کاغذی، نخستین بار در سال 1998 در یک ژنراتور فشار قوی به نام “ Power Former” ساخت ABB به کار گرفته شد. در این ژنراتور بر خلاف سابق که از هادیهای شمشی ( مستطیلی ) در سیم پیچی استاتور استفاده می شد، از هادیهای گرد استفاده شده است. همانطور که از معادلات ماکسول استنباط می شود، هادیهای سیلندری ، توزیع میدان الکتریکی متقارنی دارند. بر این اساس ژنراتوری می توان ساخت که برق را با سطح ولتاژ شبکه تولید کند بطوریکه نیاز به ترانسفورماتور افزاینده نباشد. در نتیجه این کار، تلفات الکتریکی به میزان 30 در صد کاهش می یابد.
در یک کابل پلیمری فشار قوی، میدان الکتریکی در داخل کابل باقی می ماند و سطح کابل دارای پتانسیل زمین می باشد.در عین حال میدان مغناطیسی لازم برای کار ترانسفورماتور تحت تاثیر عایق کابل قرار نمی گیرد.در یک ترانسفورماتور خشک، استفاده از تکنولوژی کابل، امکانات تازه ای برای بهینه کردن طراحی میدان های الکتریکی و مغناطیسی، نیروهای مکانیکی و تنش های گرمایی فراهم کرده است.
در فرایند تحقیقات و ساخت ترانسفورماتور خشک در ABB، در مرحله نخست یک ترانسفورماتور آزمایشی تکفاز با ظرفیت 10 مگا ولت آمپر طراحی و ساخته شد و در Ludivica در سوئد آزمایش گردید. “ Dry former” اکنون در سطح ولتاژ های از 36 تا 145 کیلو ولت و ظرفیت تا 150 مگا ولت آمپر موجود است.
1- به روغن برای خنک شده با به عنوان عایق الکتریکی نیاز ندارد.
2- سازگاری این نوع ترانسفورماتور با طبیعت و محیط زیست یکی از مهمترین ویژگی های آن است. به دلیل عدم وجود روغن، خطر آلودگی خاک و منابع آب زیر زمینی و همچنین احتراق و خطر آتش سورزی کم میشود.
3- با حذف روغن و کنترل میدانهای الکتریکی که در نتیجه آن خطر ترانسفور ماتور از نظر ایمنی افراد ومحیط زیست کاهش می یابد، امکانات تازه ای از نظر محل نصب ترانسفورماتور فراهم میشود.به این ترتیب امکانات نصب ترانسفورماتور خشک در نقا شهری و جاهایی که از نظر زیست محیطی حساس هستند، فراهم میشود.
4- در ترانسفورماتور خشک به جای بوشینگ چینی در قسمتهای انتهایی از عایق سیسیکن را بر استفاده میشود. به این ترتیب خطر ترک خوردن چینی بوشینگ و نشت بخار روغن از بین میرود.
5- کاهش مواد قابل اشتعال، نیاز به تجهیزات گسترده آتش نشانی کاهش میدهد. بنابراین از این دستگاهها در محیط های سر پوشیده و نواحی سرپوشیده شهری نیز می توان استفاده کرد.
6- با حذف روغن در ترانسفورماتور خشک، نیاز به تانک های روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن کاملاً از بین میرود.بنابراین کار نصب آسانتر شده و تنها شامل اتصال کابلها و نصب تجهیزات خنک کننده خواهد بود.
7- از دیگر ویژگی های ترانسفورماتور خشک، کاهش تلفات الکتریکی است. یکی از راههای کاهش تلفات و بهینه کردن طراحی ترانسفورماتور، نزدیک کردن ترانسفورماتور به محل مصرف انرژی تا حد ممکن است تا از مزایای انتقال نیرو به قدر کافی بهره برداری شود. با بکار گیری ترانسفورماتور خشک این امر امکان پذیر است .
8- اگر در پست، مشکل برق پیش آید، خطری متوجه عایق ترانسفورماتور نمی شود. زیرا منبع اصلی گرما یعنی تلفات در آن تولید نمی شود.بعلاوه چون هوا واسطه خنک شدن است و هوا هم مرتب تعویض و جابجا می شود، مشکلی از بابت خنک شدن ترانسفورماتور بروز نمی کند.
ترانسفورماتورخشک برای اولین بار در اواخر سال 1999 در Lotte fors سوئد به آسانی نصب شده و از آن هنگام تاکنون به خوبی کار کرده است. در آینده ای نزدیک دومین واحد ترانسفورماتور خشک ساخت ABB (Dry former ) در یک نیروگاه هیدروالکتریک در سوئد نصب می شود.
چشم انداز آینده تکنولوژی ترانسفورماتور خشک
شرکت ABB در حال توسعه ترانسفورماتور خشک Dryformer است. چند سال اول از آن در مراکز شهری و آن دسته از نواحی که از نظر محیط زیست حساس هستند، بهره برداری می شود. تحقیقات فنی دیگری نیز در زمینه تپ چنجر خشک، بهبود ترمینال های کابل و سیستم های خنک کن در حال انجام است. در حال حاضر مهمترین کار ABB، توسعه و سازگار کردن Dryformer با نیاز مصرف کنندگان برای کار در شبکه و ایفای نقش مورد انتظار در پست هاست
|
روغن ترانسفورمر
این محصول با استفاده از روغن حاصل از پالایش ISO RECYCLE و بدون استفاده از مواد افزودنی تولید گردیده است.
سطوح کارآیی
BS 148 Class-I
IEC296 Class-I
استاندارد ملی ایران شماره 2661
موارد کاربرد :
در کلیه ترانسفورماتور های افزاینده و کاهنده برق که سطوح کیفیت فوق توسط سازنده دستگاه توصیه گردیده است.
ایرانول ترانس |
ترانسC |
روش آزمون ASTM |
مشخصات فیزیکی و شیمیایی (حد معمول) | ||
گرانروی کینماتیک درcSt، 40°C |
5/16 |
D-445 |
مقاومت دی الکتریک ،kv |
30 |
D-877 |
نقطه اشتعال ، ºC |
140 |
D-92 |
نقطه ریزش طبیعی ، ºC |
30- |
D-97 |
دانسیته در Kg/m3،15°C |
860 |
D-1298 |
اسیدیته ، mg KOH/g |
03/0 |
D-664 |
پایداری اکسیداسیون ، mgKOH/g |
5/1 |
BS 148 |
پایداری اکسیداسیون ،WT% |
3/0 |
BS 148 |
|